A p-th Degree Immersed Finite Element for Boundary Value Problems with Discontinuous Coefficients
نویسندگان
چکیده
In this manuscript we present a p-th degree immersed finite element method for solving boundary value problems with discontinuous coefficients. In this method, interface jump conditions are employed in the finite element basis functions, and the mesh does not have to be aligned with coefficient discontinuity. We show that under h refinement the immersed finite element solution converges to the true solution at the optimal O(h) and O(h) rates in the L and H norms, respectively. Furthermore, we show that the immersed finite element solution converges exponentially fast under p refinement and hp refinement. Numerical examples are provided to illustrate features of this immersed finite element method.
منابع مشابه
Higher-order Immersed Discontinuous Galerkin Methods
We propose new discontinuous finite element methods that can be applied to one-dimensional elliptic problems with discontinuous coefficients. These methods are based on a class of higher degree immersed finite element spaces and can be used with a mesh independent of the location of coefficient discontinuity. Numerical experiments are presented to show that these methods can achieve optimal con...
متن کاملImmersed Finite Element Methods for Elliptic Interface Problems with Non-homogeneous Jump Conditions
Abstract. This paper is to develop immersed finite element (IFE) functions for solving second order elliptic boundary value problems with discontinuous coefficients and non-homogeneous jump conditions. These IFE functions can be formed on meshes independent of interface. Numerical examples demonstrate that these IFE functions have the usual approximation capability expected from polynomials emp...
متن کاملSuperconvergence of Discontinuous Galerkin Method for Linear Hyperbolic Equations in One Space Dimension∗
In this paper, we study the superconvergence of the error between the discontinuous Galerkin (DG) finite element solution and the exact solution for linear conservation laws when upwind fluxes are used. We prove that if we apply piecewise k-th degree polynomials, the error between the DG solution and the exact solution is (k+2)-th order superconvergent at the downwind-biased Radau points with s...
متن کاملEquidistribution grids for two-parameter convection–diffusion boundary-value problems
In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...
متن کاملHigh Degree Immersed Finite Element Spaces by a Least Squares Method
We present a least squares framework for constructing p-th degree immersed finite element (IFE) spaces for typical second-order elliptic interface problems. This least squares formulation enforces interface jump conditions including extended ones already proposed in the literature, and it guarantees the existence of p-th IFE shape functions on interface elements. The uniqueness of the proposed ...
متن کامل